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LETTER TO THE EDITOR

Existence of stable periodic orbits in the x*y* potential:
a semiclassical approach

Debabrata Biswas, M Azam, Q V Lawande and S V Lawande

Theoretical Physics Division, Central Complex, Bhabha Atomic Research Centre,
Bombay 400 085, India

Received 1 July 1991, in final form 28 January 1992

Abstract. We use the semiclassical periodic orbit theory to identify the recently discovered
one-parameter family of stable periodic orbits in the x?y* potential occupying an area of
0.005% on the surface of section. We also indicate the presence of another stable family
of periodic orbits of higher length. The sensitivity of the method provides hope for ruling
out ergodicity in other systems.

Generic Hamiltonian systems are known to possess a rich dynamical structure [1].
While some orbits in phase space reside on invariant tori, others explore the entire
constant energy surface chaotically. The two limits spanned by this generic category
are the integrable and the chaotic systems (strongly ergodic). For N-dimensional
systems, the former case is characterized by periodic orbits that occur in {N —1)-
parameter families while in case of the latter, these are isolated and unstable. Examples
of systems known to be fully chaotic are the Sinai [2] and Bunumovich [3] billiards,
and the motion on a Riemann surface of constant negative curvature [4]. Amongst the
analytic Hamiltonians, a likely candidate has been the motion in the potential [5, 6]
V(x, y) = x*¥*/2. The importance of this system in Yang-Mills theory [5] has been a
motivating factor for its study and a number of researchers have in various ways argued
that the system is strongly ergodic, with all periodic orbits isolated and unstable (see
[5] for details). The recent work of Dahlgvist and Russberg [7], however, indicates
otherwise. There does exist at least one family of stable periodic orbits in the system.

The discovery, though not quite accidental, does raise an important question. Is it
possible to extract details of the nature of periodic orbits through ather more practical
means? The well established connection between the periodic orbits and the semi-

classical density of energy eigenstates does provide an answer. In the following we
report our first results for an analytic Hamiltonian system and show that starting from
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the quantum spectra, it is possible to ‘read off’ the lengths and (more 1mportant) the
nature of periodic orbits of the underlying classical system. We shall, at the moment,
restrict ourselves to the x°y® potential and concentrate on the one-parameter family
of periodic orbits discovered recently by Dahlqvist and Russberg [7]. We also indicate
the presence of another stable family of periodic orbits at higher length which probably
occupies a larger area in phase space

The Hamiltonian H = p2/2 +py/2+ x’y*/ 2 exhibits dynamical similarity due to the
homogeneity of both the kinetic and potential energies. As a result, all periodic orbits
depend trivially on the energy. The scaling relation between the orbits at different
energies are thus simple. A trajectory (p(¢), q(r)) at energy E is determined by a
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trajectory ( po(?), go(1)) by the Scalmgp('r) (E/Eo)'’po(t), q(7) = (E/Eg)"/*qq(t) and
the scaled time 7= (E/E,) "

The classical action § = §p dq thus satisfies the scaling S(E)= S(E}(E/E,)**.
For a periodic orbit $= | p dg =(E)**f(1,), where f(I,) is a constant depending only
on the periodic orbit. It is actually the scaled action of the orbit.

For the family of stable periodic orbits recently discovered the quantity f(I,) = 34.8.
It was computed using a fourth-order Runge-Kutta method and numerical errors are
under control. The orbit is stable [7] and moreover the total area of the elliptic region
in the surface of section was found to be 0.005%. Our efforts in the following would
be to determine the scaled action, f(I,), of this stable family of periodic orbits using
only the quantum spectra.

It is now well established that the semiclassical spectrum of time independent
Hamiltonian systems is determined by the periodic orbits of the underlying dynamics.
The main result of the periodic orbit (ro} theory, developed by Gutzwiller, Balian and
Bloch and Berry and “i'abor (for a review see Berry [8]} is that the semiclassical level
density, d(E)=3X,8(F — E;), can be written as

d(E)=(d(E))+do E)
~(d(EN+E L Ay (E) cost T8, (E) - ) (1)

where v labels all the primitive periodic orbits of the classical system with action
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S.(E) and phase a.,. The sum descnbes oscillatory correction to the mean level density,

(d(E)), which is given by the size of the energy shell in phase space. The amplitudes

A, ; of the oscillation depend on two aspects of the periodic orbits—whether they are

stable and whether they are isolated. 1f the orbit is exponentially unstable (chaotic),

A, ; decreases exponentially with j whereas A, ; oscillates with j if the orbit is stable

and isolated. If the orbit is stable and non-isolated, the amplitudes follow a power law.
We study the function [9, 10],

=Y cos(EY*L) exp(—E¥*B) L>0 (2)

where {E,} are the energy eigenvalues of the quantum system and g is a damping
factor. Using (1) one can write g(L) as

o«

g(L)=| dE(d(E))cos(E” L) exp(~E*B)
0

+j dos( E) cos(E¥*L) exp(—E**B8) dE. (3)
(1]

For the x2y” potential, the average integrated density of states, (N(E))~ E¥?In(E)
in the asymptotic case. The first integral (f,) can thus be carried out and yields a term
which has a positive peak at L =0 and thereafter decays rapidly with L. It therefore
contains information about the zero length orbits and hence will not be of any interest
in the discussion that follows.

The second integral { I,) can be carried out if the energy dependence of the amplitude
is known. For the system under consideration, A, ; ~ E ~*/Vjf{l,) for periodic orbits
occuring in one-parameter families. For orbits that are isolated, A, ;~
E™'"%/sin(ju,), E~'/*/sinh(ju,) and E~'/*/cosh(ju,) for stable, hyperbolic and inverse
hyperbolic cases respectively. Here w, is the stability angle. Moreover the phase
a,=mw/4+ jk,/2 for a one-parameter family and a, = jk,m/2 for the isolated cases.
k, denotes the number of conjugate points on the trajectory.
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Thus, assuming the presence of a one-parameter family of periodic orbits, the
integral I, has a term of the form,

JI=(C/VIfF(L) J'm E™® cos(E**L) exp(—E"*B) cos(E¥*f (1,)— n,m/4) dE
0

where C, is a constant depending on the measure of the one-parameter family in phase
space and its degeneracy and n, = (2k,j+1). Thus

1 =(C,/Vif (L Ncos(n,m/ A (H) Fi(s, 3; b5/48)/ B
+sin(n,w/4)b, T (i3}, F(i, 3; b3/4B8)/B" /1 exp(—b2/4B)+ T

where b, =jf(l,)— L and T is an identical term with b, replaced by a, =jf(l,}+ L.
The term T therefore is not of any interest since it decays rapidly with L. The first
term contributes an interesting structure to g(L} as we shall now briefly describe.

For n#/2 lying in the first quadrant, g (L) increases with L in the left neighbourhood
of jf(l,) and attains a positive peak. It then decreases, crosses the point jf(l,) and
takes negative values till another orbit takes over. In the event of a periodic orbit lying
in the immediate neighbourhood, interference effects would occur. A similar situation
occurs for n,7/2 in the third quadrant except that the peak is now negative. For n,7/2
lying in the second quadrant, the peak is again negative but the point jf(l,) now lies
on the left neighbourhood of the peak (negative slope). Similarly for the fourth
quadrant, the peak is positive and jf(l,) lies on the left neighbourhood of the peak.

The heights of the peaks moreover depend inversely on v/j, where j is the repetition
number. However, a comparison should be made only between peaks for which the
phase differs by integer multipies of .

For orbits that are isolated, the behaviour is in sharp contrast to the earlier case.
At the point jf (1,), either a peak or a zero occurs depending on the number of conjugate
points. The amplitude oscillates with j in the stable case and decays exponentially in
the unstable case.

For the one-parameter family under consideration, the number of conjugate points
is two. For successive repetitions, the phase therefore differs by #. Peaks should then
alternate in sign and the first peak should be negative.

We have computed g(L) using the first 300 energy eigenvalues and with g fixed
at 0.05. The contribution of the last term in the sum of (2) is thus ~107*. The neglect
of the terms due to the remaining eigenvalues has practically no effect on g(L}. The
Schridinger equation was solved in a suitable harmonic oscillator basis. A total of
1485 basis states were used and the matrix diagonalized using standard library routines.
Convergence, however, is somewhat slow, possibly due to the ‘escape channels’ along
the axes as discussed by Eckhardt et al [11]. We have compared our results with
eigenvalues obtained using 1375 basis states. For the 100th eigenvalue the change is
0.07% while for the 300th one, the change is about 0.7%. Due to the (large} value of
B chosen, however, the errors are considerably damped.

We provide plots for a typical positive and negative peak. Our results in the
neighbourhood of L=34.8 are displayed in figure 1{a). The vertical dashed line
corresponds to jf (I,) with j = 1. The characteristics mentioned above are clearly visible.
The peak is negative and f{I,} lies to the right neighbourhood of the peak, correspond-
ing to n,m/2 in the third quadrant. The effect of a nearby orbit is also visible. Figure
1(b) is a similar plot around L = 69.6. The peak is now positive and the point L =69.64
lies on the right neighbourhood indicating a phase change of =.
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Figure 1. Plots of g(L) in the neighbourhood of {a) L=34.82 and (b) L =69.64. The
dashed vertical lines indicate the position of the first and second repetition of the stable
periodic orbit family.

The above observations thus clearly indicate that the periodic orbit of scaled action
F{1,)=134.382 is stable and occurs in a one-parameter family. An additional verification
comes from a comparison of the amplitudes. Our results for the first six and the ninth
repetitions are shown in table 1. Clearly, the signs of the third and ninth amplitudes
are just the opposite of what is expected. A careful analysis of these amplitudes and
their signs indicate the presence of another one-parameter family of periodic orbits
with scaled action equal to 1.5 f(1,), where (L) =34.82. Indeed, we have found this
to be the case. The heights of successive peaks of this new orbit are given in table 2.

For the orbit of scaied action, 34.82, we shali thus compare the second, fourth and
fifth repetitions with the first. The observed values lie within 6.45%, 6.02% and 4.08%
of the expected values shown in column 3 of table 1. The differences through small,
are due to a (varying) background provided by the neighbouring orbits. The power
law behaviour ('), however, is quite evident.

Table 2 shows the heights of successive peaks (B;) for the orbit of scaled action,
52.23, The second, fourth and sixth repetitions of this orbit interfere with the third,
sixth and ninth repetition of the orbit at L =34.82 and hence the amplitudes B,, B,
and Bg cannot be ‘read off’ directly. Column 3 of table 2 provides the actual amplitudes
of B, and B,. Since both B, and |A | cos(67)/v6 have the same sign, the peak at

Table 1. The peaks A; for successive repetitions of the periodic orbit at L=34.82. The
third and sixth differ in sign from the expected value in column 3. The sixth is considerably
enhanced. For details see text.

i A 1A} cos(jm)/ V]
1 ~8.83 -8.83

2 +5.68 +6.24

3 +5.507 -5.03

4 +4,149 +4.415

5 -4.101 -3.94

6 +4.92 +3.60

9 +3.23 -2.94
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Table2. The peaks B, for the orbit at L = 52.23. The second, fourth and sixth peaks interfere
with the third, sixth and ninth peaks of the previous orbit. The # in column 3 indicates an
anomaly, For details see text.

—| Ayl cos(3j/2m)/VF

i B, +| B[ cos(mj) | By cos(jm)/j
1 -12.113 - -12.413

2 +5.507 +10.54 +8.57

3 ~7.35 — -70

4 +4.92 . +6.05

5 ~6.28 — -5.42

6 +3.23 +6.17 +4.95

or B,) is comparatively low. We do not know how to explain this anomalous behaviour.
However, a comparison with the expected values given in column 4 clearly shows a
power law behaviour. Moreover the magnitudes of the peaks, A, and B, of the primitive
orbits at L=34.82 and 52.23 indicate that the area occupied (on the surface of section)
is much larger in the latter case.

We have thus clearly been able to identify the stable one-parameter family of
pericdic orbits of scaled action 34.82 using only the quantum spectra. We have also
indicate the presence of another stable family of perigdic orbits of scaled action 52.23.

The fact that it is possible to identify stable periodic orbits occupying a very small
area on the surface of section (0.005% for the shorter orbit) provides hope that this
method can be used to rule out ergodicity in a large class of Hamiltonian systems.
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