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LEITER TO THE EDITOR 

Existence of stable periodic orbits in the x2y2 potential: 
a semiclassical approach 

Debabrata Biswas, M h a m ,  Q V Lawande and S V Lawande 
Theoretical Physia Division, Central Complex, Bhabha Atomic Research Centre, 
Bombay 400 085, India 

Received 1 July 1991, in final form 28 January 1992 

A b t n c t .  We use the semiclassical periodic orbit theory to identify the recently discovered 
one-parameter family of stable periodic orbits in the x’y‘ potential occupying an area of 
0.005% on the surface of section. We atso indicate the presence of another stable family 
of periodic orbits of higher length. The sensitivity of the method provides hope for ruling 
out ergodicity in other systems. 

Generic Hamiltonian systems are known to possess a rich dynamical structure [I]. 
While some orbits in phase space reside on  invariant tori, others explore the entire 
constant energy surface chaotically. The two limits spanned by this generic category 
are the integrable and the chaotic systems (strongly ergodic). For N-dimensional 
systems, the former case is characterized by periodic orbits that occur in ( N -  1)- 
parameter families while in case of the latter, these are isolated and unstable. Examples 
of systems known to be fully chaotic are the Sinai [Z] and Bunumovich [3] billiards, 
and the motion on a Riemann surface of constant negative curvature [4]. Amongst the 
analytic Hamiltonians, a likely candidate has been the motion in the potential [ 5 , 6 ]  
V ( x , y )  = x2y2 /2 .  The importance of this system in Yang-Mills theory [5] has been a 
motivating factor for its study and a number of researchers have in various ways argued 
that the system is strongly ergodic, with all periodic orbits isolated and unstable (see 
[SI for details). The recent work of Dahlqvist and Russberg [7], however, indicates 
otherwise. There does exist a t  least one family of stable periodic orbits in the system. 

The discovery, though not quite accidental, does raise an important question. Is it 
possible to extract details of the nature of periodic orbits through other more practical 
means? The well established connection between the periodic orbits and the semi- 
classical density of energy eigenstates does provide an answer. In the following we 

the quantum spectra, it is possible to ‘read off‘ the lengths and (more important) the 
nature of periodic orbits of the underlying classical system. We shall, at the moment, 
restrict ourselves to the x2y2 potential and concentrate on the one-parameter family 
of periodic orbits discovered recently by Dahlqvist and Russberg [71. We also indicate 
the presence of another stable family of periodic orbits at higher length which probably 
occupies a larger area in phase space. 

The Hamiltonian H = p : / 2 + p : / 2 + x 2 y ’ / 2  exhibits dynamical similarity due to the 
homogeneity of both the kinetic and potential energies. As a result, all periodic orbits 
depend trivially on the energy. The scaling relation between the orbits a t  different 
energies are thus simple. A trajectory ( p ( r ) ,  q ( t ) )  at energy E is determined by a 
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trajectory ( p d t ) ,  q d f ) )  by the scalingp(.r) = ( E / E o ) 1 / 2 p o ( t ) ,  q(7)  = (E /E , )1 ’4q , ( t )  and 
the scaled time T =  (E/E,)-’/4. 

The classical action S = $  p dq thus satisfies the scaling S ( E ) =  S(E, ) (E/E, ) ’ /* .  
For a periodic orbit S = J p  dq = (E)’”f(I7) ,  wheref(l,) is a constant depending only 
on the periodic orbit. It is actually the scaled action of the orbit. 

For the family of stable periodic orbits recently discovered the quantityf(1,) = 34.8. 
It was computed using a fourth-order Runge-Kutta method and numerical errors are 
under control. The orbit is stable [7] and moreover the total area of the elliptic region 
in the surface of section was found to be 0.005%. Our efforts in the following would 
be to determine the scaled action, f(l,.), of this stable family of periodic orbits using 
only the quantum spectra. 

It is now well established that the semiclassical spectrum of time independent 
Hamiltonian systems is determined by the periodic orbits of the underlying dynamics. 
The main result of the periodic orbit (PO) theory, developed by Gutzwiller, Balian and 
Bloch and Berry and ’i’abor (for a review see Berry [SI) is that the semiclassical level 
density, d ( E )  = Zc S ( E  - E j ) ,  can be written as 

d ( E  1 = ( d ( E  1) + do,@ ) 

= ( d ( E ) ) + Z  X A,j(E) cos{j[S,(E)-a,ll (1) 

where 7 !ah& a!! the primitiv. p ~ r i ~ &  orbits of the &$sir.! system with &ion 
j y  

S J E )  and phase a,.. The sum describes oscillatory correction to the mean level density, 
( d ( E ) ) ,  which is given by the size of the energy shell in phase space. The amplitudes 
A, of the oscillation depend on two aspects of the periodic orbits-whether they are 
stable and whether they are isolated. If the orbit is exponentially unstable (chaotic), 
A , j  decreases exponentially with j whereas A, oscillates with j if the orbit is stable 
and isolated. If the orbit is stable and non-isolated, the amplitudes follow a power law. 

We study the function [9, 101, 

g ( L )  = E  C O S ( E : / ~ L ) ~ ~ ~ ( - E : / * ~ )  L>O (2) 

where { E . )  are the energy eigenvalues of the quantum system and p is a damping 
factor. Using (1) one can write g ( L )  as 

g i i )  = J, d E ( d ( E ) )  cos(E”-L) exp(-E”*g) 
m r . -. . , -. . , -, , . . 

+Iom d,,,(E) COS(E’’~L) exp(-E’l2p) dE. (3) 

For the x2y2 potential, the average integrated density of states, ( N (  E ) ) -  E’”In(E) 
in the asymptotic case. The first integral (I,) can thus be carried out and yields a term 
which has a positive peak at L = 0 and thereafter decays rapidly with L. It therefore 
contains information about the zero length orbits and hence will not be of any interest 
in the discussion that follows. 

The second integral ( 12) can be carried out ifthe energy dependence ofthe amplitude 
is known. For the system under consideration, A , j  - E - ’ / ’ / W  for periodic orbits 
occuring in one-parameter families. For orbits that are isolated, A,.j - 
E-’/4/sin(ju,), E-‘”/sinh(ju,) and E-’/4/cosh(ju,) for stable, hyperbolic and inverse 
hyperbolic cases respectively. Here U? is the stability angle. Moreover the phase 
a? = v/4+jk7?rJ2 for a one-parameter family and a, = jk,v/2 for the isolated cases. 
k, denotes the number of conjugate points on the trajectory. 
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Thus, assuming the presence of a one-parameter family of periodic orbits, the 
integral I ,  has a term of the form, 

where C, is a constant depending on the measure of the one-parameter family in phase 
space and its degeneracy and nr = (2k , j+  1). Thus 

J:  = ( C , / ~ ) [ c o s ( n , r / 4 ) r ( ~ ) , F , ( ~ ,  f ;  b~/4p) /pS’“  

+ s i n ( n , ~ / 4 ) b , r ( ~ ) , F , ( ~ ,  :; b:/4p)/p””2] exp(-b:/4p)+ T 

where b, =fl(/,) - L and T is an  identical term with b, replaced by o7 =fl(/,.) + L. 
The term T therefore is not of any interest since it decays rapidly with L. The first 
term contributes an interesting structure to g ( L )  as we shall now briefly describe. 

For n , ~ / 2  lying in the first quadrant, g(L) increases with L in the left neighbourhood 
of $ ( I , )  and attains a positive peak. It then decreases, crosses the point $ ( I , )  and 
takes negative values till another orbit takes over. In the event of a periodic orbit lying 
in the immediate neighbourhood, interference effects would occur. A similar situation 
occurs for n77r/2 in the third quadrant except that the peak is now negative. For n , ~ / 2  
lying in the second quadrant, the peak is again negative but the point $ ( I , )  now lies 
on the left neighbourhood of the peak (negative slope). Similarly for the fourth 
quadrant, the peak is positive and $ ( I , )  lies on the left neighbourhood of the peak. 

The heights of the peaks moreover depend inversely on 4, where j is the repetition 
number. However, a comparison should be made only between peaks for which the 
phase differs by integer multiples of T. 

For orbits that are isolated, the behaviour is in sharp contrast to the earlier case. 
At the point$( I.,), either a peak or a zero occurs depending on the number of conjugate 
points. The amplitude oscillates with j in the stable case and decays exponentially in 
the unstable case. 

For the one-parameter family under consideration, the number of conjugate points 
is two. For successive repetitions, the phase therefore differs by T. Peaks should then 
alternate in sign and the first peak should be negative. 

We have computed g(L) using the first 300 energy eigenvalues and with p fixed 
at 0.05. The contribution of the last term in the sum of (2) is thus The neglect 
of the terms due to the remaining eigenvalues has practically no effect on g ( L ) .  The 
Schrodinger equation was solved in a suitable harmonic oscillator basis. A total of 
1485 basis states were used and the matrix diagonalized using standard library routines. 
Convergence, however, is somewhat slow, possibly due to the ‘escape channels’ along 
the axes as discussed by Eckhardt et a/ [ll].  We have compared our results with 
eigenvalues obtained using 1375 basis states. For the 100th eigenvalue the change is 
0.07% while for the 300th one, the change is about 0.7%. Due to the (large) value of 
p chosen, however, the errors are considerably damped. 

We provide plots for a typical positive and negative peak. Our results in the 
neighbourhood of L=34.8 are displayed in figure l(n).  The vertical dashed line 
corresponds to$( I , )  with j = 1. The characteristics mentioned above are clearly visible. 
The peak is negative andf(l,) lies to the right neighbourhood of the peak, correspond- 
ing to n , ~ / 2  in the third quadrant. The effect of a nearby orbit is also visible. Figure 
I(b) is a similar plot around L = 69.6. The peak is now positive and the point L = 69.64 
lies on the right neighbourhood indicating a phase change of T. 
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Figore 1. Plots of g(L) in the neighbourhood of ( a )  L=34.82 and ( b )  L=69.M. The 
dashed veltical lines indicate the position of the fint and second repetition of the stable 
periodic orbit family. 

The above observations thus clearly indicate that the periodic orbit of scaled action 
f ( l , )  = 34.82 is stable and occurs in a one-parameter family. An additional verification 
comes from a comparison of the amplitudes. Our results for the first six and the ninth 
repetitions are shown in table 1. Clearly, the signs of the third and ninth amplitudes 
are just the opposite of what is expected. A careful analysis of these amplitudes and 
their signs indicate the presence of another one-parameter family of periodic orbits 
with scaled action equal to lSf(I,) ,  wheref(l,) =34.82. Indeed, we have found this 
to be the case. The heights of successive peaks of this new orbit are given in table 2. 

For ihe orbii of scaied action, 34.82, we snaii thus compare the second, fourth and 
fifth repetitions with the first. The observed values lie within 6.45%, 6.02% and 4.08% 
of the expected values shown in column 3 of table 1. The differences through small, 
are due io a (varying) background provided by the neighbouring orbits. The power 
law behaviour ( j -”* ) ,  however, is quite evident. 

Table 2 shows the heights of successive peaks (B,) for the orbit of scaled action, 
52.23. The second, fourth and sixth repetitions of this orbit interfere with the third, 
sixth and ninth repetition of the orbit at L=34.82 and hence the amplitudes B,, B, 
and B6 cannot be ‘read off directly. Column 3 of table 2 provides the actual amplitudes 
of B, and B,. Since both E,  and IA,I cos(6a)/& have the same sign, the peak at 

Table 1. The peaks A, for successive repetitions of the periodic orbit at L=34.82. The 
third and sixth differ in sign from the expected value in column 3. The sixth is considerably 
enhanced. For details see text. 

1 -8.83 -8.83 
2 +5.68 +6.24 
3 +SS07 -5.03 
4 +4.149 +4.415 
5 -4.101 -3.94 
6 +4.92 +3.60 
9 + I 2 3  -2.94 
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Table 2. The peaks E, far the orbit at L = 52.23. The second, fourth and sixth peaks interfere 
with the third, sixth and ninth peaks of the previous orbit. "he * in column 3 indicates an 
anomaly. For details see text. 

-IA,I cos (3 j /2* ) /6  
j 4 +IB,I c o s ( 4  lB,I c m ( j r ) / 6  

1 -12.113 - -12.113 
2 +5.507 +10.54 +8.57 
3 -7.35 - -7.0 
4 +4.92 +6.05 
5 -6.28 - -5.42 
6 +3.23 +&I7 +4.95 

i= 208.92 shouid have been considerabiy enhanced. However, the observed vaiue (A, 
or E,) is comparatively low. We do not know how to explain this anomalous behaviour. 
However, a comparison with the expected values given in column 4 clearly shows a 
power law behaviour. Moreover the magnitudes of the peaks, A, and E ,  of the primitive 
orbits at L = 34.82 and 52.23 indicate that the area occupied (on the surface of section) 
is much larger in the latter case. 

We have thus clearly been able to  identify the stable one-parameter family of 
periodic orbits of scaled action 34.82 using only the Cuantum spectra. We have also 
indicate the presence of another stable family of periodic orbits of scaled action 52.23. 

The fact that it is possible to identify stable periodic orhits occupying a very small 
area on the surface of section (0.005% for the shorter orhit) p y i d e s  hope that this 
method can be used to rule out ergodicity in a large class of Hamiltonian systems. 
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